Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

نویسندگان

  • Chien-Cheng Lee
  • Shin-Sheng Huang
  • Cheng-Yuan Shih
چکیده

This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Face Recognition Algorithm Based on Kernel Regularized Relevance-Weighted Discriminant Analysis

In this paper, we propose an effective feature dimensionality-reduction method, called Kernel Regularized Relevance Weighted Discriminant Analysis (KRRWDA), for robust face recognition, with several interesting characteristics. First, it can effectively deal with the small sample size (SSS) problem by using Regularized Linear Discriminant Analysis (RLDA) technique, which is a dimensionality red...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Normalization Discriminant Independent Component Analysis

In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from t...

متن کامل

The Effect of Distance Measures on the Recognition Rates of PCA and LDA Based Facial Recognition

Many components affect the success of a facial recognition system. While some research attempts to improve on PCA or LDA algorithms, an often overlooked component is the distance measure. In this paper we show that the choice of distance measure greatly affects the recognition rate. Experiments are performed using the FRGC and FERET face databases. Recognition rates of ten distance measures are...

متن کامل

Regularized D-LDA for face recognition

Linear Discriminant Analysis (LDA) is derived from the optimal Bayes classifier when classes are assumed to be Gaussian with identical covariance matrices. However, it is well known that the distribution of face images under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. The Quadratic Discriminant Analysis (QDA) which relaxes the identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010